iTaSC concepts and tutorial

European Robotics Forum 2012, Odense, Denmark

Wilm Decré Tinne De Laet Dominick Vanthienen Herman Bruyninckx Joris De Schutter
Katholieke Universiteit Leuven
Department of Mechanical Engineering Division PMA
Robotics Research Group

problem statement

challenge

programming general sensor-based robot systems for complex tasks complex tasks:

- combination of subtasks
- sensor feedback
- large variety of robot systems
- uncertain environments

problem statement

current state

- reprogramming for every task
- specialist
- time consuming + expensive

our goal

development of programming support:

- non-specialists
- less time consuming

problem statement

programming support

SYSTEMATIC approach of specification of tasks

our contribution

framework with:

- systematic approach and
- estimation support for uncertain environments

aim of presentation

aim of presentation

- to show, by means of an example application, how framework for 'Constraint-based task specification and Estimation for Sensor-Based Robot Systems in the Presence of Geometric Uncertainty' works and what its advantages are
- explain generic control and estimation scheme
- show application to other example tasks

laser tracing task

Figure: simultaneous laser tracing on a plane and a barrel

overview

introduction

framework
general principle
control and estimation scheme task modeling

control and estimation

conclusion
example applications

general principle

- robot task: accomplishing relative motion and/or controlled dynamic interaction between objects
- specify task by imposing constraints
\Rightarrow task function approach or constraint-based task programming

application independent versus application dependent

- application independent: control and estimation scheme
- application dependent - but systematic: task modeling procedure

control and estimation scheme

- plant P :
\square robot system (\boldsymbol{q})
\square environment
- controller C
- model update and estimation $M+E$

Figure: general
control scheme

control and estimation scheme

nomenclature:

- control input u: desired joint velocities
- system output \boldsymbol{y} : controlled variables \Rightarrow task specification $=$ imposing constraints \boldsymbol{y}_{d} on \boldsymbol{y}
- measurements \mathbf{z} : observe the plant
- geometric disturbances, χ_{u}

Figure: general
control scheme

control and estimation scheme

conclusion

task independent derivation of controller block and model update and estimation block IF
specific task modeling procedure is used

task modeling

- task modeling uses TASK COORDINATES:
- two types of task coordinates:
\square feature coordinates, χ_{f}
\square uncertainty coordinates, χ_{μ}
- task coordinates defined in user-defined frames

goal

choose frames and task coordinates in a way the task specification becomes intuitive
framework presents procedure to do this

task modeling procedure

four steps:

1. identify objects and features and assign reference frames
2. choose feature coordinates χ_{f}
3. choose uncertainty coordinates χ_{u}
4. specify task

task modeling procedure

four steps:

1. identify objects and features and assign reference frames
2. choose feature coordinates χ_{f}
3. choose uncertainty coordinates χ_{u}
4. specify task

STEP 1: object and feature frames

a feature is linked to an object

- physical entity
(vertex, edge, face, surface...)
- abstract geometric property (symmetry axis, reference frame of a sensor,....)

STEP 1: object and feature frames

each constraint needs four frames:

- two object frames: o1 and o2
- two feature frames: $f 1$ and $f 2$

Figure: object and feature frames and feature coordinates

STEP 1: object and feature frames

- natural task description imposes two

Figure: object and feature frames laser tracing motion constraints:

1. trace figure on plane
2. trace figure on barrel

- \Rightarrow two feature relationships:

1. feature a : for the laser-plane
2. feature b : for the laser-barrel

- the objects are:

1. laser a and laser b
2. the plane
3. the barrel

STEP 1: object and feature frames

object and feature frames

- for laser-plane feature:
\square frame o1 ${ }^{a}$ fixed to plane
\square frame $o 2^{a}$ fixed to first laser, z-axis along laser beam
\square frame $f 1^{a}$ same orientation as $o 1^{a}$, at intersection of laser with plane
\square frame $f 2^{a}$ same position as $f 1^{a}$ and same orientation as $o 2^{a}$
- for laser-barrel feature:

STEP 1: object and feature frames

object and feature frames

- for laser-plane feature:
- for laser-barrel feature:
\square frame $o 1^{b}$ fixed to barrel, x-axis along axis of barrel
\square frame $o 2^{b}$ fixed to second laser, z-axis along the laser beam
\square frame $f 1^{b}$ at intersection of laser with barrel, z-axis perpendicular to barrel surface, x-axis parallel to barrel axis
- frame $f 2^{b}$ same position as $f 1^{b}$, same orientation as $o 2^{b}$

task modeling procedure

four steps:

1. identify objects and features and assign reference frames
2. choose feature coordinates χ_{f}
3. choose uncertainty coordinates χ_{u}
4. specify task

STEP 2: feature coordinates

- in general six degrees of freedom between 01 and $o 2$
- o $1 \rightarrow f 1 \rightarrow f 2 \rightarrow o 2=$ virtual kinematic chain
- for every feature χ_{f} can be partitioned

Figure: object and feature frames and

$$
\chi_{f}=\left(\begin{array}{lll}
\chi_{f l}{ }^{T} & \chi_{f I \prime} & \chi_{f I I \prime} \tag{1}
\end{array}\right)^{T}
$$

STEP 2: feature coordinates

- laser-plane feature:

$$
\begin{align*}
\chi_{f I^{a}} & =\left(\begin{array}{ll}
x^{a} & y^{a}
\end{array}\right)^{T} \tag{2}\\
\chi_{f \prime \prime}^{a} & =\left(\begin{array}{lll}
\phi^{a} & \theta^{a} & \psi^{a}
\end{array}\right)^{T} \tag{3}\\
\chi_{f I I \prime} & =\left(\begin{array}{ll}
z^{a}
\end{array}\right) \tag{4}
\end{align*}
$$

- laser-barrel feature

STEP 2: feature coordinates

- laser-plane feature
- laser-barrel feature:

$$
\begin{align*}
\chi_{f I}{ }^{b} & =\left(\begin{array}{ll}
x^{b} & \alpha^{b}
\end{array}\right)^{T} \tag{2}\\
\chi_{f I I}^{b} & =\left(\begin{array}{lll}
\phi^{b} & \theta^{b} & \psi^{b}
\end{array}\right)^{T} \tag{3}\\
\chi_{f I I \prime} & =\left(\begin{array}{l}
z^{b}
\end{array}\right) \tag{4}
\end{align*}
$$

task modeling procedure

four steps:

1. identify objects and features and assign reference frames
2. choose feature coordinates χ_{f}
3. choose uncertainty coordinates χ_{u}
4. specify task

STEP 3: uncertainty coordinates

focus on two types of geometric uncertainty:

1. uncertainty pose of object, and
2. uncertainty pose of feature wrt corresponding object uncertainty coordinates represent pose uncertainty of real frame wrt modeled frame:

$$
\chi_{u}=\left(\begin{array}{llll}
\chi_{u l} & \chi_{u l l}^{T} & \chi_{u l l \prime} & \chi_{u} N^{T} \tag{5}
\end{array}\right)^{T}
$$

Figure: feature and uncertainty coordinates

STEP 3: uncertainty coordinates

- unknown position and orientation plane :

$$
\chi_{u l}{ }^{a}=\left(\begin{array}{lll}
h^{a} & \alpha^{a} & \beta^{a}
\end{array}\right)^{T}
$$

- unknown position barrel:

$$
\chi_{u l}{ }^{b}=\left(\begin{array}{ll}
x_{u}^{b} & y_{u}^{b}
\end{array}\right)^{T}
$$

task modeling procedure

four steps:

1. identify objects and features and assign reference frames
2. choose feature coordinates χ_{f}
3. choose uncertainty coordinates χ_{u}
4. specify task

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

remember: task objective is twofold:

1. trace desired figure on plane
2. trace desired figure on barrel

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and $\chi_{\boldsymbol{u}}$

- output equations:
\square for the plane:

$$
y_{1}=x^{a} \quad \text { and } \quad y_{2}=y^{a}
$$

\square for the barrel

- constraint equations: in this example the desired paths are circles: $y_{i d}(t)$, for $i=1, \ldots, 4$
- measurement equations:

$$
z_{1}=z^{a} \quad \text { and } \quad z_{2}=z^{b}
$$

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and χ_{μ}

- output equations:
\square for the plane
\square for the barrel:

$$
y_{3}=x^{b} \quad \text { and } \quad y_{4}=\alpha^{b}
$$

- constraint equations:
in this example the desired paths are circles: $y_{i d}(t)$, for $i=1, \ldots, 4$
- measurement equations:

$$
z_{1}=z^{a} \quad \text { and } \quad z_{2}=z^{b}
$$

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

- output equations:
\square for the plane
\square for the barrel
- constraint equations:
in this example the desired paths are circles: $y_{i d}(t)$, for $i=1, \ldots, 4$
- measurement equations:

$$
z_{1}=z^{a} \quad \text { and } \quad z_{2}=z^{b}
$$

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and χ_{μ}

- output equations:

\square for the plane
\square for the barrel
- constraint equations:
in this example the desired paths are circles: $y_{i d}(t)$, for $i=1, \ldots, 4$
- measurement equations:

$$
z_{1}=z^{a} \quad \text { and } \quad z_{2}=z^{b}
$$

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

position loop constraints:

two position loop constraints, one for each feature relationship

- laser-plane feature a
- laser-barrel feature b

STEP 4: task specification

observation

task is easily specified using task coordinates χ_{f} and χ_{u}

position loop constraints:

two position loop constraints, one for each feature relationship

- laser-plane feature a
- laser-barrel feature b

task modeling

conclusion

- application dependent - but systematic modeling procedure provided easy task specification and uncertainty modeling
- application independent controller and model update and estimation block automatically derived
\Rightarrow overall fast and easy task
specification

Figure: general control scheme

overview

introduction

framework
control and estimation
equations
control law model update and estimation

conclusion

example applications

Equations (1)

- robot system equation: relates the control input \boldsymbol{u} to the rate of change of the robot system state:

$$
\begin{equation*}
\frac{d}{d t}\binom{\boldsymbol{q}}{\dot{\boldsymbol{q}}}=\boldsymbol{s}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u}) \tag{6}
\end{equation*}
$$

- output equation: relates the position based outputs \boldsymbol{y} to the joint and feature coordinates:

$$
\begin{equation*}
f\left(\boldsymbol{q}, \chi_{f}\right)=y \tag{7}
\end{equation*}
$$

Equations (2)

- measurement equation: relates the position based measurements z to the joint and feature coordinates:

$$
\begin{equation*}
h\left(q, \chi_{f}\right)=z \tag{8}
\end{equation*}
$$

- artificial constraints: used to specify the task:

$$
\begin{equation*}
y=y_{d} \tag{9}
\end{equation*}
$$

- natural constraints: for rigid environments:

$$
\begin{equation*}
g\left(q, \chi_{f}\right)=0 \tag{10}
\end{equation*}
$$

\rightarrow special case of the artificial constraints with $\boldsymbol{y}_{\boldsymbol{d}}=0$

Equations (3)

- dependency relation between \boldsymbol{q} and $\chi_{\boldsymbol{f}}$, perturbed by uncertainty coordinates χ_{μ} :

$$
\begin{equation*}
I\left(q, \chi_{f}, \chi_{\mu}\right)=0 \tag{11}
\end{equation*}
$$

\rightarrow nonholonomic systems: replace \boldsymbol{q} by operational coordinates $\chi_{\boldsymbol{q}}$
\rightarrow derived using position closure equations \Rightarrow loop constraints

auxiliary coordinates

the benefit of introducing feature coordinates $\chi_{\boldsymbol{f}}$ is that they can be chosen according to the specific task at hand, such that equations (7)-(10) can much be simplified. A similar freedom of choice exists for the uncertainty coordinates in equation (11)

control law

goal

1. provide system input \boldsymbol{u} at each time step

- here: assume a velocity-controlled robot $\left(\boldsymbol{u}=\dot{\boldsymbol{q}}_{d}\right)$
- control law is based on system linearization, resulting in an equation of the form:

$$
\begin{equation*}
\boldsymbol{A} \dot{\boldsymbol{q}}_{d}=\dot{\boldsymbol{y}}_{d}^{\circ}+\boldsymbol{B} \widehat{\dot{\chi}}_{u} \tag{12}
\end{equation*}
$$

- weighted pseudo-inverse solving approach can handle over- and/or underconstrained cases next to constraint weighting: levels of constraints based on nullspace projections
- details in appendix

model update and estimation

goal

1. provide estimate for system outputs \boldsymbol{y} used in feedback terms of constraint equations (24)
2. provide estimate for the uncertainty coordinates χ_{μ} used in control input (26)
3. maintain consistency between joint and feature coordinates \boldsymbol{q} and χ_{f} based on the loop constraints
model update and estimation is based on an extended system model:

$$
\frac{d}{d t}\left(\begin{array}{c}
\boldsymbol{q} \tag{13}\\
\chi_{f} \\
\chi_{u} \\
\dot{\chi}_{u} \\
\ddot{\chi}_{u}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -f_{f}^{-1} & J_{u} \\
0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{q} \\
\chi_{f} \\
\chi_{u} \\
\dot{\chi}_{u} \\
\ddot{\chi}_{u}
\end{array}\right)+\left(\begin{array}{c}
1 \\
-f_{f}^{-1} J_{q} \\
0 \\
0 \\
0
\end{array}\right) \dot{\boldsymbol{q}}_{d}
$$

model update and estimation

prediction-correction procedure

- prediction

1. generate prediction based on extended system model
2. eliminate inconsistencies between predicted estimates

- correction

1. generate updated estimated based on predicted estimates and information from sensor measurements
2. eliminate inconsistencies between predicted estimates

overview

introduction

framework
control and estimation
conclusion
example applications

conclusion (1)

conclusion

- motion specification and estimation in unified framework
- automatic application independent derivation of control and model update and estimation
- application dependent - but systematic - task modeling

remark

this presentation focused on the basic functionality of the framework further generalizations include inequality constraints and motion planning

further reading

framework journal paper

- Constraint-Based Task Specification and Estimation for Sensor-Based Robot Systems in the Presence of Geometric Uncertainty
- Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré, Ruben Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx
- Journal of Robotics Research, May 2007, vol. 26, no. 5, pages 433-455

extended framework conference paper

- Extending iTaSC to Support Inequality Constraints and Non-Instantaneous Task Specification
- Wilm Decré, Ruben Smits, Herman Bruyninckx, and Joris De Schutter
- Proceedings of the International Conference on Robotics and Automation, 2009, pages 964-971

THANKS FOR YOUR ATTENTION!

overview

introduction

framework
control and estimation

conclusion

example applications
human-robot co-manipulation
mobile robot
multiple robots

human-robot co-manipulation

Figure: the experimental setup for the human-robot co-manipulation task

Figure: the object and feature frames for a human-robot co-manipulation task

object and feature frames

Figure: the object and feature frames for a human-robot co-manipulation task

- natural task description imposes three motion constraints:
\square align one side of the object according to the camera
\square carry the weight and generate downward motion to realize desired contact force
\square follow human intent
- \Rightarrow two feature relationships:
\square feature a : visual servoing
\square feature b : force control
- the objects are:

1. the environment (or camera)
2. the object

object and feature frames

Figure: the object and feature frames for a human-robot co-manipulation task

- frame o1 ${ }^{a}$ fixed to robot environment (camera)
- frame o2 at center of object
- o1b fixed to $o 2$ by a compliance
- frame $f 1^{a}$ at reference pose on support
- frame $f 2^{a}$ fixed to the object
- no force \Rightarrow frames $f 1^{b}$ and $f 2^{b}$ coincide with o2,
forces $\Rightarrow f 1^{b}$ and $f 2^{b}$ deviate from each other

feature coordinates

Figure: the object and feature frames for a human-robot co-manipulation task

- for feature a :

$$
\begin{align*}
\chi_{f I^{a}} & =(-) \tag{14}\\
\chi_{f I I^{a}} & =\left(\begin{array}{llllll}
x^{a} & y^{a} & z^{a} & \phi^{a} & \theta^{a} & \left.\psi^{a}(1) 5\right) \\
\chi_{f I I \prime}{ }^{a} & =(-)
\end{array}\right.
\end{align*}
$$

- for feature b :

$$
\begin{equation*}
\chi_{\boldsymbol{f I}}{ }^{b}=(-) \tag{17}
\end{equation*}
$$

$\chi_{f I I^{b}}=\left(\begin{array}{llllll}x^{b} & y^{b} & z^{b} & \phi^{b} & \theta^{b} & \psi^{b}(178)\end{array}\right)$
$\chi_{f I I I}{ }^{b}=(-)$

task specification

Figure: the object and feature frames for a human-robot co-manipulation task

- output equations:
\square camera:

$$
\begin{equation*}
y_{1}=x^{a}, \quad y_{2}=y^{a} \tag{14}
\end{equation*}
$$

\square contact force with support:

$$
\begin{gather*}
y_{3}=F_{z}=k_{z} x^{b}, \quad y_{4}=T_{x}=k_{\alpha x} \phi^{b} \\
y_{5}=T_{y}=k_{\alpha y} \theta^{b} \tag{15}
\end{gather*}
$$

\square human interaction:

$$
\begin{gather*}
y_{6}=F_{x}=k_{x} x^{b}, \quad y_{7}=F_{y}=k_{y} y^{b} \\
y_{8}=T_{z}=k_{\alpha z} \psi^{b} \tag{16}
\end{gather*}
$$

- constraint equations:
- measurement equations:

task specification

Figure: the object and feature frames for a human-robot co-manipulation task

- output equations:
- constraint equations:

$$
\begin{gather*}
y_{1 d}=0 \mathrm{~mm}, \quad y_{2 d}=60 \mathrm{~mm} \\
y_{3 d}=F_{z d}, \quad y_{4 d}=0, \quad y_{5 d}=0 \\
y_{6 d}=y_{7 d}=y_{8 d}=0 \tag{14}
\end{gather*}
$$

- measurement equations: in this example all the outputs can be measured:

$$
\begin{equation*}
z_{i}=y_{i} \quad \text { for } i=1, \ldots, 8 \tag{15}
\end{equation*}
$$

results

Figure: the left plot shows the forces F_{x} and F_{y}, exerted by the operator during the co-manipulation task. the right plot shows the alignment errors x^{a} and y^{a} as measured by the camera.

mobile robot

Figure: left for feature a, ultrasonic sensor; middle for feature b, range finder; right for feature c, robot trajectory

object and feature frames

- task description: move robot along a trajectory with respect to the world while measuring distance to a wall with ultrasonic sensor and measuring the distance and angle to a beacon
- \Rightarrow three feature relationships:

1. feature a: ultrasonic sensor
2. feature b : range finder
3. feature c : motion specification

- the objects are:

1. mobile robot
2. environment (wall, beacon)

Figure: feature a

object and feature frames

- frame o1, fixed to wall, its x-axis along the wall
- frame o2, fixed to mobile robot
- for feature a (ultrasonic sensor):
\square frame $f 1^{a}$, same orientation as o1 and able to move in x direction of o1
\square frame $f 2^{a}$, fixed to frame $o 2$

Figure: feature a

object and feature frames

- frame o1, fixed to wall, its x-axis along the wall
- frame o2, fixed to mobile robot
- for feature b (range finder):
\square frame $f 1^{b}$, at the beacon location, fixed to frame o1
\square frame $f 2^{b}, x$-axis is beam of range finder hitting the beacon

Figure: feature b

object and feature frames

- frame o1, fixed to wall, its x-axis along the wall
- frame o2, fixed to mobile robot
- for feature c (path tracking):
\square frame $f 1^{c}$, coinciding with o1
\square frame $f 2^{c}$, coinciding with $o 2$

Figure: feature c

feature coordinates

for each of the three features a minimal set of position coordinates exists representing the 3DOF between $o 1$ and o2:

- for feature a (ultrasonic sensor):

$$
\begin{align*}
\chi_{f 1^{a}} & =\left(x^{a}\right) \tag{16}\\
\chi_{f \prime \|^{a}} & =\left(\begin{array}{ll}
y^{a} & \theta^{a}
\end{array}\right)^{T} \tag{17}\\
\chi_{f \| \prime}{ }^{a} & =(-) \tag{18}
\end{align*}
$$

Figure: feature a

feature coordinates

for each of the three features a minimal set of position coordinates exists representing the 3DOF between o1 and o2:

- for feature b (range finder):

$$
\begin{align*}
\chi_{f I}{ }^{b} & =(-) \tag{16}\\
\chi_{f I I}^{b} & =\left(\begin{array}{ll}
x^{b} & \theta^{b}
\end{array}\right)^{T} \tag{17}\\
\chi_{f I I I} & =\left(\phi^{b}\right) \tag{18}
\end{align*}
$$

Figure: feature b

feature coordinates

for each of the three features a minimal set of position coordinates exists representing the 3DOF between o1 and o2:

- for feature c (path tracking):

$$
\begin{array}{rlr}
\chi_{f I^{c}} & =\left(\begin{array}{ll}
-
\end{array}\right) \\
\chi_{f \prime \prime} & =\left(\begin{array}{lll}
x^{c} & y^{c} & \theta^{c}
\end{array}\right)^{T}(17) \\
\chi_{f I I \prime} & =\left(\begin{array}{ll}
-
\end{array}\right) \tag{18}
\end{array}
$$

Figure: feature c

operational space robot coordinates

Nonholonomic robot:

- position loop constraints cannot be written in terms of \boldsymbol{q}
- \Rightarrow define operational space robot coordinates χ_{q}
- natural choice: $\chi_{\boldsymbol{q}}=\chi_{\boldsymbol{f}}{ }^{c}$
- dependency relation between $\dot{\chi}_{\boldsymbol{q}}$ and $\dot{\boldsymbol{q}}$ is very simple: (nonholonomic constraint)

$$
\dot{\chi}_{q}=\left(\begin{array}{c}
\dot{x}^{c} \tag{16}\\
\dot{y}^{c} \\
\dot{\theta}^{c}
\end{array}\right)=J_{r} \dot{\boldsymbol{q}}
$$

uncertainty coordinates

Nonholonomic robot:

- dependency relation between $\dot{\chi}_{q}$ and $\dot{\boldsymbol{q}}$ is very simple: (nonholonomic constraint)

$$
\dot{\chi}_{q}=\left(\begin{array}{c}
\dot{x}^{c} \tag{16}\\
\dot{y}^{c} \\
\dot{\theta}^{c}
\end{array}\right)=J_{r} \dot{q}
$$

- replace \boldsymbol{q} in (7) and (11) by $\chi_{\boldsymbol{q}}$ results in:

$$
\begin{equation*}
\boldsymbol{C}_{\boldsymbol{q}}=\frac{\partial \boldsymbol{f}}{\partial \chi_{\boldsymbol{q}}} \boldsymbol{J}_{r} \quad J_{\boldsymbol{q}}=\frac{\partial \boldsymbol{I}}{\partial \chi_{\boldsymbol{q}}} J_{r} \tag{17}
\end{equation*}
$$

uncertainty coordinates

- the nonholonomic constraint which may be disturbed by wheel slip:

$$
\begin{equation*}
\dot{\chi}_{\boldsymbol{q}}=\boldsymbol{J}_{r}\left(\dot{\boldsymbol{q}}+\dot{\boldsymbol{q}}_{s l i p}\right) \tag{16}
\end{equation*}
$$

- $\dot{\boldsymbol{q}}_{\text {slip }}=s \dot{\boldsymbol{q}}$, with s the estimated slip rate
- $\Rightarrow \chi_{u \boldsymbol{N}}=\boldsymbol{q}_{\text {slip }}$ and from (20):
$J_{u}=J_{q}$

Figure: feature a

task specification

- output equations

$$
y_{1}=x^{c}, \quad y_{2}=y^{c}, \quad y_{3}=\theta^{c}
$$

- constraint equations: from the desired path in terms of x^{a}, y^{a} and θ^{a}, the desired values $y_{1 d}(t)$, $y_{2 d}(t)$ and $y_{3 d}(t)$ can be obtained
- measurement equations:

$$
z_{1}=y^{a}, \quad z_{2}=x^{b}, \quad z_{3}=\theta^{b}(17)
$$

Figure: feature c

feedback control

the path controller is implemented in operation space, by applying constraints (24) with

$$
\boldsymbol{K}_{\boldsymbol{p}}=\left(\begin{array}{ccc}
k_{p} & 0 & 0 \tag{16}\\
0 & 0 & 0 \\
0 & \frac{k_{p}^{2}}{2 \operatorname{sign}\left(\dot{x}_{c}\right)} & k_{p}
\end{array}\right)
$$

and k_{p} a feedback constant

Figure: feature c

results

without slip:

Figure: localization and path tracking control of a mobile robot

results

with slip:

Figure: localization and path tracking control of a mobile robot with slip

multiple robots with simultaneous tasks

Figure: two robots performing simultaneous pick-and-place and painting operations on a single work piece

overview

control details
control law
closed loop behavior
invariant constraint weighting

control law (1)

- differentiate output equation (7) to obtain an output equation at velocity level:

$$
\begin{equation*}
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\chi}_{\boldsymbol{f}}} \dot{\boldsymbol{\chi}}_{\boldsymbol{f}}=\dot{\boldsymbol{y}} \tag{17}
\end{equation*}
$$

written as:

$$
\begin{equation*}
C_{q} \dot{q}+C_{f} \dot{\chi}_{f}=\dot{y} \tag{18}
\end{equation*}
$$

- differentiate position loop constraint (11):

$$
\begin{equation*}
\frac{\partial \boldsymbol{I}}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}+\frac{\partial \boldsymbol{I}}{\partial \boldsymbol{\chi}_{\boldsymbol{f}}} \dot{\chi}_{\boldsymbol{f}}+\frac{\partial \boldsymbol{I}}{\partial \boldsymbol{\chi}_{\boldsymbol{u}}} \dot{\chi}_{\boldsymbol{u}}=\mathbf{0} \tag{19}
\end{equation*}
$$

or:

$$
\begin{equation*}
J_{q} \dot{q}+J_{f} \dot{\chi}_{f}+J_{u} \dot{\chi}_{u}=\mathbf{0} \tag{20}
\end{equation*}
$$

control law (2)

- $\dot{\chi}_{f}$ solved from (20):

$$
\begin{equation*}
\dot{\chi}_{f}=-J_{f}^{-1}\left(J_{q} \dot{q}+J_{u} \dot{\chi}_{u}\right) \tag{21}
\end{equation*}
$$

- substituting (21) into (18) yields the modified output equation:

$$
\begin{equation*}
A \dot{q}=\dot{y}+B \dot{\chi}_{u} \tag{22}
\end{equation*}
$$

where $\boldsymbol{A}=\boldsymbol{C}_{\boldsymbol{q}}-\boldsymbol{C}_{\boldsymbol{f}} \boldsymbol{J}_{\boldsymbol{f}}{ }^{-1} \boldsymbol{J}_{\boldsymbol{q}}$ and $\boldsymbol{B}=\boldsymbol{C}_{\boldsymbol{f}} \boldsymbol{J}_{\boldsymbol{f}}{ }^{-1} \boldsymbol{J}_{\boldsymbol{u}}$.

- plant assumed to be ideal velocity controlled system:

$$
\begin{equation*}
\dot{\boldsymbol{q}}=\boldsymbol{u}=\dot{\boldsymbol{q}}_{d} . \tag{23}
\end{equation*}
$$

control law (3)

- Constraint equation (9) expressed at velocity level and include feedback:

$$
\begin{equation*}
\dot{\boldsymbol{y}}=\underbrace{\dot{\boldsymbol{y}}_{d}+\boldsymbol{K}_{p}\left(\boldsymbol{y}_{d}-\boldsymbol{y}\right)}_{\dot{\boldsymbol{y}}_{d}^{\circ}} \tag{24}
\end{equation*}
$$

- Applying constraint (24) to (22), and substituting system equation (23):

$$
\begin{equation*}
\boldsymbol{A} \dot{\boldsymbol{q}}_{d}=\dot{\boldsymbol{y}}_{d}^{\circ}+\boldsymbol{B} \widehat{\hat{\chi}}_{\mu} \tag{25}
\end{equation*}
$$

Solving for the control input $\dot{\boldsymbol{q}}_{d}$:

$$
\begin{equation*}
\dot{\boldsymbol{q}}_{d}=\boldsymbol{A}_{w}^{\#}\left(\dot{\boldsymbol{y}}_{d}^{\circ}+\boldsymbol{B} \widehat{\dot{\chi}}_{u}\right) \tag{26}
\end{equation*}
$$

closed loop behavior

substituting control input (26) in system equation (23) and then in output equation (22), and solving for $\dot{\boldsymbol{y}}$:

$$
\begin{equation*}
\dot{\boldsymbol{y}}=\boldsymbol{A} A_{w}^{\#} \dot{\boldsymbol{y}}_{d}^{\circ}+\left(\boldsymbol{A} A_{w}^{\#}-1\right) B \dot{\chi}_{u}+\boldsymbol{A} A_{w}^{\#} B\left(\widehat{\dot{\chi}}_{u}-\dot{\chi}_{u}\right) \tag{27}
\end{equation*}
$$

invariant constraint weighting

- pseudo-inverse approach to handle over- and/or underconstrained cases
- in joint space: mass matrix of robot
- in Cartesian space, $\boldsymbol{W}=\operatorname{diag}\left(w_{i}^{2}\right)$, with:

$$
\begin{equation*}
w_{i}=\alpha \frac{1}{\Delta_{p i} k_{p i}} \quad \text { or } \quad w_{i}=\alpha \frac{1}{\Delta_{v i}} \tag{28}
\end{equation*}
$$

- next to weighting: levels of constraints based on nullspace projections

