
1

The OROCOS Project
Open RObot COntrol Software

Copyright © 2002-2007 Herman Bruyninckx, Peter Soetens

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation, with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of this license can be found at http://www.fsf.org/copyleft/fdl.html.

Revision History
Revision 0.01 05 Dec 2002 hb

Initial version
Revision 0.19.2 11 March 2005 ps

Added Application Stack figure, removed confusing
objects and components section, adapted vision :-)

Revision 0.22.0 7 March 2006 ps
Added section 'Building Orocos Applications'

Revision 1.0.2 4 Jan 2007 ps
Made this a less technical document

Abstract

This document gives an application oriented overview of Orocos [http://www.orocos.org],
the Open RObot COntrol Software project.

Table of Contents
1. What is Orocos? ... 1
2. Target audience ... 2
3. Building Orocos Applications .. 4

3.1. Application Templates ... 4
3.2. Control Components .. 5

4. Related 'Orocos' Projects .. 7

1. What is Orocos?
“Orocos” is the acronym of the Open Robot Control Software [http://
www.orocos.org] project. The project's aim is to develop a general-purpose, free
software, and modular framework for robotand machine control. The Orocos project
supports 4 C++ libraries: the Real-Time Toolkit, the Kinematics and Dynamics
Library, the Bayesian Filtering Library and the Orocos Component Library.

http://www.fsf.org/copyleft/fdl.html
http://www.orocos.org
http://www.orocos.org
http://www.orocos.org
http://www.orocos.org
http://www.orocos.org

The OROCOS Project

2

Figure 1. Orocos Libraries

• The Orocos Real-Time Toolkit (RTT) is not an application in itself, but it provides
the infrastructure and the functionalities to build robotics applications in C++. The
emphasis is on real-time, on-line interactive and component based applications.

• The Orocos Components Library (OCL) provides some ready to use control
components. Both Component management and Components for control and
hardware access are available.

• The Orocos Kinematics and Dynamics Library (KDL) is a C++ library which
allows to calculate kinematic chains in real-time.

• The Orocos Bayesian Filtering Library (BFL) provides an application independent
framework for inference in Dynamic Bayesian Networks, i.e., recursive
information processing and estimation algorithms based on Bayes' rule, such as
(Extended) Kalman Filters, Particle Filters (Sequential Monte methods), etc.

Orocos is a free software project, hence its code and documentation are released under
Free Software licenses.

Your feedback and suggestions are greatly appreciated. Please, use the project's
mailing list [http://lists.mech.kuleuven.be/mailman/listinfo/orocos] for this purpose.

2. Target audience
Robotics or machine control in general is a very broad field, and many roboticists
are pursuing quite different goals, dealing with different levels of complexity, real-
time control constraints, application areas, user interaction, etc. So, because the
robotics community is not homogeneous, Orocos targets four different categories of
“Users” (or, in the first place, “Developers”):

http://lists.mech.kuleuven.be/mailman/listinfo/orocos
http://lists.mech.kuleuven.be/mailman/listinfo/orocos

The OROCOS Project

3

1. Framework Builders.

These developers do not work on any specific application, but they provide the
infrastructure code to support applications. This level of supporting code is most
often neglected in robot software projects, because in the (rather limited) scope
of each individual project, putting a lot of effort in a generic support platform
is often considered to be “overkill”, or even not taken into consideration at all.
However, because of the large scope of the Orocos project, the supporting code
(the “Framework”) gets a lot of attention. The hope is, of course, that this work
will pay of by facilitating the developments for the other “Builders”. The RTT,
KDL and BFL are created by Framework builders

2. Component Builders.

Components provide a “service” within an application. Using the infrastructure
of the framework, a Component Builder describes the interface of a service and
provides one or more implementations. For example a Kinematics Component
may be designed as such that it can “serve” different kinematic architectures. Other
examples are Components to hardware devices, Components for diagnostics,
safety or simulation. The OCL is created by Component Builders.

3. Application Builders.

These developers use the Orocos' Framework and Components, and integrate them
into one particular application. That means that they create a specific, application-
dependent architecture: Components are connected and configured as such that
they form an application.

4. End Users.

These people use the products of the Application Builders to program and run
their particular tasks.

End Users do not directly belong to the target audience of the Orocos project, because
Orocos concentrates on the common framework, independent of any application

The OROCOS Project

4

architecture. Serving the needs of the End Users is left to (commercial and non-
commercial) Application Builders.

3. Building Orocos Applications
Orocos applications are composed of software components, which form an
application specific network. When using Orocos, you can choose to use predefined
components, contributed by the community, or build your own component, using
the Orocos Real-Time Toolkit. This section introduces both ways of building
applications.

Figure 2. Orocos Real-Time Toolkit

3.1. Application Templates
An "Application Template" is a set of components that work well together. For
example, the application template for motion control contains components for path

The OROCOS Project

5

planning, position control, hardware access and data reporting. The components are
chosen as such that their interfaces are compatible.

An application template should be so simple that any Orocos user can pick one and
modify it, hence it is the first thing a new user will encounter. An application template
should be explainable on one page with one figure explaining the architecture.

Note

An application template has no relation to 'C++' templates.

3.2. Control Components
Applications are constructed using the Orocos "Control Component". A distributable
entity which has a control oriented interface.

Figure 3. Orocos Control Component Interface

A single component may be well capable of controlling a whole machine, or is just
a 'small' part in a whole network of components, for example an interpolator or
kinematic component. The components are built with the "Real-Time Toolkit" and
optionally make use of any other library (like a vision or kinematics toolkit). Most
users will interface components through their (XML) properties or command/method
interface in order to configure their applications.

The OROCOS Project

6

There are five distinct ways in which an Orocos component can be interfaced: through
its properties, events, methods, commands and data flow ports (Figure 3, “ Orocos
Control Component Interface ”). These are all optional interfaces. The purpose and
use of these interface 'types' is documented in the Orocos Component Builder's
Manual. Each component documents its interface as well. To get a grip on what
these interfaces mean, here are some fictitious component interfaces for a 'Robot'
Component:

• Data-Flow Ports: Are a thread-safe data transport mechanism to communicate
buffered or un-buffered data between components. For example: "JointSetpoints",
"EndEffectorFrame", "FeedForward",...

• Properties: Are run-time modifiable parameters, stored in XML files. For example:
"Kinematic Algorithm", "Control Parameters", "Homing Position", "ToolType",...

• Methods: Are callable by other components to 'calculate' a result immediately,
just like a 'C' function. For example: "getTrackingError()", "openGripper()",
"writeData("filename")", "isMoving()", ...

• Commands: Are 'sent' by other components to instruct the receiver to 'reach a
goal' For example: "moveTo(pos, velocity)", "home()",... A command cannot, in
general, be completely executed instantaneously, so the caller should not block and
wait for its completion. But the Command object offers all functionalities to let the
caller know about the progress in the execution of the command.

• Events: Allows functions to be executed when a change in the system occurs. For
example: "Position Reached", "Emergency Stop", "Object Grasped",...

Besides defining the above component communication mechanisms, Orocos allows
the Component or Application Builder to write hierarchical state machines which use
these primitives. This is the Orocos way of defining your application specific logic.
State machines can be (un-)loaded at run-time in any component.

The OROCOS Project

7

Figure 4. Orocos Control Component State Machines.

4. Related 'Orocos' Projects
The Orocos project spawned a couple of largely independent software projects. The
documentation you are reading is about the Real-Time Control Software located on
the Orocos.org web page. The other not real-time projects are :

• At KTH Stockholm, several releases have been made for component-based
robotic systems, and the project has been renamed to Orca [http://orca-
robotics.sourceforge.net/].

• Although not a project funded partner, the FH Ulm maintains Free CORBA
communication patterns for modular robotics : Orocos::SmartSoft [http://
www.rz.fh-ulm.de/~cschlege/orocos/].

This documentation is targeted at industrial robotics and real-time control.

http://orca-robotics.sourceforge.net/
http://orca-robotics.sourceforge.net/
http://orca-robotics.sourceforge.net/
http://www.rz.fh-ulm.de/~cschlege/orocos/
http://www.rz.fh-ulm.de/~cschlege/orocos/
http://www.rz.fh-ulm.de/~cschlege/orocos/

